picos.expressions.exp_renyientr

Implements Renyi entropy expressions.

Classes

class picos.expressions.exp_renyientr.BaseQuasiEntropy(X, Y, alpha)[source]

Bases: Expression

Base class defining a general quasi-relative entropy expression.

__ge__(other)[source]

Return a constraint that the expression is lower-bounded.

__init__(X, Y, alpha)[source]

Construct an BaseQuasiEntropy.

Parameters
__le__(other)[source]

Return a constraint that the expression is upper-bounded.

property X

The expression X.

property Y

The additional expression Y.

property alpha

The alpha \alpha.

property iscomplex

Whether X and Y are complex expressions or not.

property n

Lengths of X and Y.

class picos.expressions.exp_renyientr.BaseRenyiEntropy(X, Y, alpha, u=None)[source]

Bases: Expression

Base class used to define a general Renyi entropy expression.

__init__(X, Y, alpha, u=None)[source]

Construct an BaseRenyiEntropy.

Parameters
  • X (AffineExpression) – The affine expression X.

  • Y (AffineExpression) – The affine expression Y. This should have the same dimensions as X.

  • alpha (float) – The parameter \alpha.

  • u (AffineExpression) – An additional scalar affine expression u. If specified, then this defines the perspective of the Renyi entropy.

__le__(other)[source]

Return a constraint that the expression is upper-bounded.

property X

The expression X.

property Y

The additional expression Y.

property alpha

The alpha \alpha.

property iscomplex

Whether X and Y are complex expressions or not.

property n

Lengths of X and Y.

property u

The additional expression u.

class picos.expressions.exp_renyientr.QuasiEntropy(X, Y, alpha)[source]

Bases: BaseQuasiEntropy

Quasi-relative entropy of an affine expression.

Definition

Let X and Y be N \times N-dimensional symmetric or hermitian matrices. Then this is defined as

\operatorname{Tr}[ X^\alpha Y^{1-\alpha} ],

for some \alpha\in[-1, 2].

Warning

When you pose an upper or lower bound on this expression, then PICOS enforces X \succeq 0 and Y \succeq 0 through an auxiliary constraint during solution search.

class picos.expressions.exp_renyientr.RenyiEntropy(X, Y, alpha, u=None)[source]

Bases: BaseRenyiEntropy

Renyi entropy of an affine expression.

Definition

Let X and Y be N \times N-dimensional symmetric or hermitian matrices. Then this is defined as

\frac{1}{\alpha-1}\log(\operatorname{Tr}[ X^\alpha Y^{1-\alpha} ]),

for some \alpha\in[0, 1).

Warning

When you pose an upper or lower bound on this expression, then PICOS enforces X \succeq 0 and Y \succeq 0 through an auxiliary constraint during solution search.

class picos.expressions.exp_renyientr.SandQuasiEntropy(X, Y, alpha)[source]

Bases: BaseQuasiEntropy

Sandwiched quasi-relative entropy of an affine expression.

Definition

Let X and Y be N \times N-dimensional symmetric or hermitian matrices. Then this is defined as

\operatorname{Tr}[ (Y^{\frac{1-\alpha}{2\alpha}}
X Y^{\frac{1-\alpha}{2\alpha}})^\alpha ],

for some \alpha\in[1/2, 2].

Warning

When you pose an upper or lower bound on this expression, then PICOS enforces X \succeq 0 and Y \succeq 0 through an auxiliary constraint during solution search.

class picos.expressions.exp_renyientr.SandRenyiEntropy(X, Y, alpha, u=None)[source]

Bases: BaseRenyiEntropy

Sandwiched Renyi entropy of an affine expression.

Definition

Let X and Y be N \times N-dimensional symmetric or hermitian matrices. Then this is defined as

\frac{1}{\alpha-1}\log(\operatorname{Tr}[ (Y^{\frac{1-\alpha}{2\alpha}}
X Y^{\frac{1-\alpha}{2\alpha}})^\alpha ]),

for some \alpha\in[1/2, 1).

Warning

When you pose an upper or lower bound on this expression, then PICOS enforces X \succeq 0 and Y \succeq 0 through an auxiliary constraint during solution search.