Source code for picos.expressions.set_simplex

# ------------------------------------------------------------------------------
# Copyright (C) 2019 Maximilian Stahlberg
# Based on the original picos.expressions module by Guillaume Sagnol.
#
# This file is part of PICOS.
#
# PICOS is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# PICOS is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
# A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with
# this program.  If not, see <http://www.gnu.org/licenses/>.
# ------------------------------------------------------------------------------

"""Implements :class:`Simplex`."""

import operator
from collections import namedtuple

from .. import glyphs
from ..apidoc import api_end, api_start
from ..constraints import SimplexConstraint
from .data import convert_and_refine_arguments
from .exp_affine import AffineExpression, Constant
from .set import Set

_API_START = api_start(globals())
# -------------------------------


[docs]class Simplex(Set): r"""A (truncated, symmetrized) real simplex. :Definition: Let :math:`r \in \mathbb{R}_{\geq 0}` the specified radius and :math:`n \in \mathbb{Z}_{\geq 1}` an arbitrary dimensionality. 1. Without truncation and symmetrization, this is the nonnegative simplex .. math:: \{x \in \mathbb{R}^n_{\geq 0} \mid \sum_{i = 1}^n x_i \leq r\}. For :math:`r = 1`, this is the standard (unit) :math:`n`-simplex. 2. With truncation but without symmetrization, this is the nonnegative simplex intersected with the :math:`\infty`-norm unit ball .. math:: \{ x \in \mathbb{R}^n_{\geq 0} \mid \sum_{i = 1}^n x_i \leq r \land x \leq 1 \}. For :math:`r \leq 1`, this equals case (1). 3. With symmetrization but without truncation, this is the :math:`1`-norm ball of radius :math:`r` .. math:: \{x \in \mathbb{R}^n \mid \sum_{i = 1}^n |x_i| \leq r\}. 4. With both symmetrization and truncation, this is the convex polytope .. math:: \{ x \in \mathbb{R} \mid \sum_{i = 1}^n |x_i| \leq r \land 0 \leq x \leq 1 \}. For :math:`r \leq 1`, this equals case (3). """
[docs] @convert_and_refine_arguments("radius") def __init__(self, radius=Constant(1), truncated=False, symmetrized=False): """Construct a :class:`Simplex`. :param radius: The radius of the simplex. :type radius: float or ~picos.expressions.AffineExpression """ if not isinstance(radius, AffineExpression): raise TypeError("A simplex' radius must be given as a real affine " "expression, not as {}.".format(type(radius).__name__)) elif not radius.scalar: raise TypeError("A simplex' radius must be scalar, not of shape {}." .format(glyphs.shape(radius.shape))) if radius.constant and radius.value <= 1: truncated = False var = glyphs.free_var_name(radius.string) unit = "Unit " if radius.is1 else "" if not truncated and not symmetrized: typeStr = "{}Simplex".format(unit) symbStr = glyphs.set(glyphs.sep(glyphs.ge(var, 0), glyphs.le(glyphs.sum(var), radius.string))) elif truncated and not symmetrized: typeStr = "Box-Truncated {}Simplex".format(unit) symbStr = glyphs.set(glyphs.sep(glyphs.le(0, glyphs.le(var, 1)), glyphs.le(glyphs.sum(var), radius.string))) elif not truncated and symmetrized: typeStr = "{}1-norm Ball".format(unit) symbStr = glyphs.set(glyphs.sep(var, glyphs.le(glyphs.sum(glyphs.abs(var)), radius.string))) else: # truncated and symmetrized typeStr = "Box-Truncated {}1-norm Ball".format(unit) symbStr = glyphs.set(glyphs.sep(glyphs.le(-1, glyphs.le(var, 1)), glyphs.le(glyphs.sum(glyphs.abs(var)), radius.string))) self._radius = radius self._truncated = truncated self._symmetrized = symmetrized Set.__init__(self, typeStr, symbStr)
@property def radius(self): """The radius of the simplex.""" return self._radius @property def truncated(self): r"""Whether this is intersected with the unit :math:`\infty`-ball.""" return self._truncated @property def symmetrized(self): """Wether the simplex is mirrored onto all orthants.""" return self._symmetrized def _get_mutables(self): return self._radius._get_mutables() def _replace_mutables(self, mapping): return self.__class__(self._radius._replace_mutables(mapping), self._truncated, self._symmetrized) Subtype = namedtuple("Subtype", ("truncated", "symmetrized")) def _get_subtype(self): return self.Subtype(self._truncated, self._symmetrized) @classmethod def _predict(cls, subtype, relation, other): assert isinstance(subtype, cls.Subtype) if relation == operator.__rshift__: if issubclass(other.clstype, AffineExpression): return SimplexConstraint.make_type( argdim=other.subtype.dim, truncated=subtype.truncated, symmetrized=subtype.symmetrized) return NotImplemented def _rshift_implementation(self, element): if isinstance(element, AffineExpression): return SimplexConstraint(self, element) else: return NotImplemented
# -------------------------------------- __all__ = api_end(_API_START, globals())